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Received 24 April 1978, in final form 21 March 1979 

Abstract. The effects of a boundary separating two dielectrics on the radiation due to a 
relativistic charged particle moving with a uniform linear superphase velocity through one 
of them, at a height h from the other, are investigated when an alternating electric field is 
applied first parallel and then perpendicular to the direction of motion of the charge. Due to 
tJe presence of the field in this situation, Doppler radiation is emitted, along with the usual 
Cerenkov radiation. GeneralJormulae for the intensities of both types of radiation are 
derived and analysed, and the Cerenkov radiation is studied in detail for the followingcases: 
(i) when the charge moves in a vacuum at a non-zero height from the boundary; (ii) when it 
moves exact!y along the boundary. In both situations, very comeact formulae for the 
intensity of Cerenkov radiation are obtained. The dependence of Cerenkov radiation on 
the height h is studied. In the absence of the field, the intensity shows an inverse-square 
dependence on h. In the second case, the intensity of Cerenkov radiation is found to be 
nearly 60% of the intensity when the charge moves through an infinite dielectric. 

1. Introduction 

Ginzburg (1947a, b) has suggested the utilisation of Cerenkov and Doppler effects as 
one of the possible methods of microwave generation. For the utilisation of the 
Doppler effect, Ginzburg has considered the passage of non-relativistic electrons near a 
dielectric of large refractive index when an alternating electric field is applied perpen- 
dicular to the direction of motion. In connection with the generation of microwaves, 
particularly in the region inaccessible by other means, it is of interest to determine the 
radiation produced by a moving charged particle or a modulated beam close to a 
dielectric. Motz (195 1, 1956, 1968) has examined the radiation from fast-electron 
beams passing through a succession of electric or magnetic fields of alternating polarity 
in an arrangement referred to as an ‘undulator’. Depending upon the field used to 
modulate the electron beam, undulators may be electric or magnetic in nature. 
Magnetic undulators are given much more attention in the literature than the electric 
ones. The possibility of using a vacuum undulator to measure the total energy of an 
individual particle in the ultra-relativistic region is indicated by Motz (1956) and 
Korkhmazyan (1970,1972). Ginzburg (1972) has pointed out that when a transparent 
medium is present in the undulator, the radiation intensity increases sharply under 
certain conditions. Radiation from relativistic particles in an undulator is analysed by 
Alferov et a1 (1973, 1974). 

In connection with the development of relativistic electron accelerators (betatron, 
synchrotron etc), research has been devoted to the question of emission from a 
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relativistic electron moving in a magnetic field by a number of workers (Arcimovich and 
Pomeranchuk 1946, Schiff 1946, Schott 1912, Klepikov 1954, Sokolov and Matveev 
1956). The intensity of radiation of a charged particle moving in a constant electric or 
magnetic field, and its spectral and angular distributions, have been thoroughly 
described (Landau and Lifshitz 1971, Jackson 1962, Ginzburg et a1 1968, Sokolov and 
Ternov 1968). The results obtained for emission of radiation from an accelerated 
charge in a vacuum have been generalised for the motion of a charged particle in a 
medium. For the case of motion in a circle this is done by Tsytovich (1951), Ter- 
Mikaelyan (1959) and Kitao (1960), while the case of helical motion is considered by 
Kukanov etal (1971) and Andreev (1972). The law of motion of a charge moving in an 
isotropic transparent medium in the field of an intense monochromatic electromagnetic 
wave is found by Dement’ev etal (1972). The problem of emission by charged particles 
in the field of a plane electromagnetic wave in a medium with a refractive index no > 1 is 
tackled by Arutyunyan and Avetisyan (1972). 

With a view to generating microwaves, it is of interest to discuss the effects of 
electromagnetic fields on Cerenkov radiation. The problem of Cerenkov radiation in 
an alternating electric field is considered by Diasamidze and Tavdgiridze (1972). 
Changes in Cerenkov radiation caused by an external field have been studied by 
Mysakhanyan and Nikishov (1974). They have considered helical motion of an 
electron in a medium and the motion of a charge in the field of a plane electromagnetic 
wave, and have discussed the conditions for a field to affect Cerenkov radiation 
qualitatively. The effects of an alternating electric field on Cerenkov radiation in an 
infinite isotropic dielectric medium have been considered by Risbud and Takwale 
(1977, 1979). 

In the situation considered by Risbud and Takwale (1977, 1979), i.e. a charge 
moving through an infinite dielectric, the energy lost by the charge through ionisation, 
excitation and atomic collisions etc is quite large compared to the energy loss due to 
Cerenkov radiation. With a view to minimising the energy losses of the charge by 
processes other than the Cerenkov effect, the situation when the charge is moving close 
to the surface of a dielectric is worth considering. From this point of view the problem 
of Cerenkov radiation from electrons moving parallel to the surface of a semi-infinite 
plane dielectric has been treated by several authors: Danos (1955), Linhart (1953,  
Bogdankevich and Bolotovsky (1957), Sitenko and Tkalich (1960), Garibyan and 
Mergelyan (1960) and Thomas (1972). 

The aim of the present paper is to study the effects of an alternating electric field on 
Cerenkov radiation when a charge is moving above a boundary separating two 
dielectrics. The same problem is discussed in part by Diasamidze and Tavdgiridze 
(1972), giving the following conclusions. The alternating electric field of frequency oo 
can have a strong effect on Cerenkov radiation and leads to the appearance of Doppler 
radiation at a frequency greater than wo. At small amplitudes of the electric field, the 
Cerenkov radiation is reduced slightly and the Doppler radiation increases as the 
square of the field amplitude. A marked reduction in the energy losses in Cerenkov 
radiation is possible at large amplitudes of the electric field. 

We find it difficult to accept the arguments and conclusions of Diasamidze and 
Tavdgiridze (1972), as their results contain unevaluated integrals which are not in 
closed form, and hence the evaluation of actual intensities of Cerenkov and Doppler 
radiations does not seem to be possible from their results. Without evaluating integrals 
with respect to frequency o, which is rather a difficult part of the problem, they have 
drawn, merely on the basis of the integrands, some conclusions regarding the intensities 
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of the two radiations which do not seem to be justifiable. They have considered only 
extreme cases of fields-weak and strong-and have tried to analyse them qualitatively. 
Moreover, they have taken only one case, i.e. the alternating electric field applied 
parallel to the velocity of the charge. In fact the field can be applied in any direction. In 
particular, the case when the alternating electric field is applied perpendicular to the 
velocity of the charged particle is quite interesting, and although Ginzburg (1947b) had 
suggested it as a possible method for utilisation of the Doppler effect for microwave 
generation, it has not to our knowledge been tackled by any worker so far. As the work 
of Diasamidze and Tavdgiridze (1972) is rather incomplete, and their conclusions seem 
to be doubtful, we have undertaken the study of both the cases, with the field parallel 
and perpendicular to the velocity of the charge, and have derived the results for 
intensities of eerenkov and Doppler radiations in closed form. The effects of the 
boundary on eerenkov radiation in the presence of parallel as well as perpendicular 
alternating electric fields are discussed in detail under different physical situations. 

2. Parallel field: general expression for the radiation and analysis 

Consider a point charge e (figure 1) moving with a uniform linear relativistic superphase 
velocity bo parallel to the boundary separating two media that are characterised by 
dielectric constants and magnetic permeabilities and p1 (upper half-space) and eZ and 
p2 (lower half-space). We assume that the charge moves in the upper medium at a 
height h from the boundary. An alternating electric field E = Eo Sin wot  is applied 
parallel to the direction of velocity of the charge, i.e. along the z axis. The field 
superimposes oscillations on the uniform linear motion of the charge, so the velocity of 
the charge vo  changes to u ( t ) ,  given by the following components: 

v, = 0, = 0 

u,( t )  = (vo-v:  cos w o t ) / [ l - ( v o v L / c 2 )  cos wot]  (1) 
where 

X 

I Ih 

Figure 1. The motion of a charge e with velocity uo at a height h from the boundary ( Y - 2 )  
plane separating two dielectrics characterised by ~ 1 ~ 1  (upper half-space) and € 2 ~ 2  (lower 
half -space). 
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Consequently, the charge and current densities in Maxwell’s equation become 

p ( t )  = eS(x - h ) S ( y ) S ( z  - z ( t ) )  

io) = P ( t b ( t )  

where 

z ( t )  = v , ( t )  dt. J 
We assume here that the modulation energy is small compared to the mean particle 
energy, i.e. U: << uo, and so we are justified in considering terms linear in U: (Risbud and 
Takwale 1979). Therefore, retaining only such terms, we can write 

u, ( r )  = u o - v u ( l  -pi,”* cos wot (1’) 
where 

vu = eEo/mowo. 

Using equation (l’), we get 

We tackle the problem by the method of images. The boundary surfaces are 
therefore replaced by proper fictitious image electric and magnetic charge densities. In 
the case of dynamic charges the method has been developed and applied by Sitenko and 
Tkalich (1960) and Pafomov (1967). To find fields in the upper half-space (i.e. in 
dielectric 1) due to the passage of an electron through the dielectric 1 at a height h from 
the boundary surface separating dielectrics 1 and 2 (figure l), the entire space is 
assumed to be filled by dielectric 1 and, in addition to the charge e located at time t at 
the position (h,  0, v , ( t )  . t ) ,  there are fictitious electric and magnetic charges of charge 
densities el  and mi distributed in the plane x = -h, moving with the same velocity as the 
charge e. The desired field then coincides with that obtained by considering the true 
charge e along with the image charges e1 and m l  in the absence of the boundary. To 
obtain the fields in the lower half-space, the entire space is assumed to be filled by the 
dielectric 2, and electric charges of charge density e2, and magnetic charges of charge 
density m2 are assumed to be distributed in the plane x = h, moving with the velocity 
u, ( t ) .  Then the desired field is the same as that produced by the true charge e and 
the image charge densities e2 and m2 in the absence of the boundary. The proper ficti- 
tious electric and magnetic charge densities are then determined from the boundary 
conditions. 

2.1. Field potentials in the upper half-space ( x  > 0 )  

The electric and magnetic fields in the upper half-space are given by 

E(’) = E, + E ,  ( 5 )  
H(” = H, + H ,  (6)  

where E, and He are the fields associated with the true and fictitious electric charges, 
while E ,  and H ,  are those associated with the magnetic charges. These are expressed 
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through electric potentials A,  q5 and magnetic potentials F and t,b as 

E,  = -v4 - ( l / c ) ( a A / a t )  

E,= ( - l / E ) v x F  

H ,  = -v$ - ( l / c ) (aF/d t ) .  

H , = ( l / p ) V x A  

(7) 

Substituting fields from equations ( 5 ) ,  ( 6 )  and (7) in Maxwell’s equations and using the 
Lorentz gauge, we obtain the following equations for the field potentials: 

V ~ A  - (E1p,/C2)a2A/at2 = - - ( 4 ~ p ~ / ~ ) p , ( t ) u ( t )  

where 

p , ( t ) = e S ( x - h ) S ( y ) S ( z  - z ( t ) ) + e l ( y ,  z - z ( t ) ) s ( x + h )  

and 

p m ( t )  = M l ( Y ,  2 - Z ( l ) ) S ( X  + h )  

are respectively the densities of electric and magnetic charges. The second term in pe( t )  
determines the incremental charge el  (of the image) distributed in the plane x = -h. We 
find the solutions of equations (8) in the form 

+m t m  +a 

t )  = I-, I_, .i-, Q ( x ,  k,, k,, w )  exp[i(k,y + k,z -ut)] dk, dk, dw (9) 

where the function Q(r,  t )  represents any one of the field potentials A(r,  t ) ,  4 ( r ,  t ) ,  
F(r ,  t )  and $(r ,  t ) ~  

Using a property of Bessel functions: 
+CO 

exp(ia sin m o t )  = 1 Jl(a) exp(ilwot) 
/=-m 

and substituting the potentials from equation (9) in equation (8), we get the following 
equations for the expansion coefficients: 
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where 

+m +m +m 

el(k,, k,, U )  = I 1 el(y, z - z ( t ) )  exp[-i(k,y + k,z -u t ) ]  dy dz dt  (15) 
-m -a3 -m 

and a similar expression for ml(k,, k,, w ) .  
For a dispersive medium both the dielectric constant E and magnetic permeability 

are functions of frequency. The solutions of equations (lo),  (1 l ) ,  (12) and (13), which 
vanish at infinity can be obtained by the Green’s function method used in Davydov 
(1965). These are given by 

2.2. Field potentials in the lower half-space (x < 0) 

In the lower half-space, we determine the electromagnetic field using the electric and 
magnetic charge densities as 

where 
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2.3. Electromagnetic field of the charge 

We can now determine the electric potentials 4 ( r ,  t ) ,  Az(r,  t )  and the magnetic 
potentials +(r,  t )  and Fz(r, t )  in the two media by equations (9 ) ,  (16 )  and (17).  Using 
equations (7), ( 5 )  and ( 6 )  the electric and magnetic fields can be written as 

E = - V 4  - ( l / c ) d A / d t - ( l / E ) V x F  

and 

H = -v+ - ( l / c ) a F / a t  + ( I / ~ ) V  x A. 

Writing these fields in component form and applying the boundary conditions at x = 0, 
i.e. 

E:) = E(2) z ,  E?' =E?),  HI'' = p, H1" =fp, 

( a / a ~ ) ( ~ ' " - ~ ' ~ ' ) i ~ = o  = ( p Z / c ) ( a / a t ) ( n ~ 4 ' 2 ' - n 1 4  2 ( 1 )  ) Ix=o 

(a/aY)(4'2'-4'1))lx=0= P z ( a / a 4 ( k L 2 P - F 1 4  ) I x = o  

( ~ / W ( P - $  ) L o  = ( P Z / c ) ( a / a t ) ( n ~ J / ' 2 ' - n  I* ) l x = o  

( J / a Y ) ( P  - "=o = P z ( a / a x ) ( W P  - €14 )Ix=o. 

we obtain the following four equations for the electromagnetic potentials: 

(1) 

(18 )  ( 2 )  2 (1) 

( 1 )  

Substituting the solutions of electromagnetic potentials given by equations (16 ) ,  (17 )  
and ( 9 )  and putting x = 0 in equations (18 ) ,  we get four equations for the four unknowns 
e l ,  ml,  e2 and m2. Taking the dominant terms -Po only (as v u  << vo, we are justified in 
doing a linear approximation in vu (Risbud and Takwale 1979)) and solving the four 
equations simultaneously, we determine the fictitious charge densities 

el@,, k,, U ) ,  Wl(k, ,  k,, U ) ,  d k , ,  k,, U ) ,  mdk, ,  k,, U ) .  

Here we give only the expression for el(k,, k,, w )  since it is sufficient for the deter- 
mination of the energy losses. 

where 

cy = ( 1  - n : w 2 / c 2 k : ) / ( l  - n & 2 / c 2 k 2 ) .  

In the absence of a field (i.e. vu = 0) the image charge el given by equation (19 )  reduces 
to equation (10 )  of Sitenko and Tkalich (1960).  

2.4. Energy radiated 

When a charge moves through a medium, it is acted upon by a Lorentz force given by 

F = e [ E  + ( u / c )  x B ]  ( B  = pH). 
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The total energy lost by the charge per unit length of path is determined by the 
projection of this force, taken with opposite sign, on the direction of motion of the 
charge, i.e. the problem reduces to the calculation of the electric field at the point at 
which the charge is situated. Furthermore, the energy lost by the charge per unit path 
length is the same as the energy given out in radiation. Hence 

Using equations ( 5 ) ,  (7), (9) and (16), we obtain the following expression for the z 
component of the electric field: 

- 1  'm dk, dk, dw 
E, =- -k, ( 1-- "k":,:') exp[i(k,y + k,z - w t ) ]  

where el(k,, k,, w )  is given by equation (19). 

moving with a uniform superphase velocity through medium 
boundary with medium e2 in the presence of a parallel alternating electric field: 

We can now write the following expression for the total energy lost by the charge e 
at a height h above the 

Equation (20) gives Cerenkov radiation for I = 0 while it corresponds to Doppler 
radiation for 1 # 0. It consists of two parts. The first part, which corresponds to the 
figure 1 in the braces, represents the total energy loss of a point charge which moves 
with a superphase velocity through an infinite isotropic medium characterised by 
constants el  and p I  in the presence of a parallel alternating electric field. The second 
term in the braces of equation (20) represents the contribution to the energy loss due to 
the presence of another dielectric characterised by e2, p2 when a parallel alternating 
electric field is applied. 

We therefore write symbolically 

-ag/az = -agUnhd/az -agbd/az 

where -a8unbd/a t  represents the energy loss in an unbounded dielectric while 
-d8"dZaz represents the effects of a boundary. Let us consider these two parts 
separately. 
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The integration with respect to k, in equation (20) can be performed using a S 
function. For integration with respect to k, we use 

2 2 2  k, G (U + lwo/vo)[w nlPo/(w + 1 ~ ~ ) ~  - 1l1j2 

which is obtained as as a result of the conditions 
w 2 2 2  n1P0/(w+lwo)2>1. Re  x1 < 0, 

Performing integration with respect to k, and k, for the first term within the braces of 
equation (20), we obtain the following expression for the energy loss in an unbounded 
medium: 

Equation (21) agrees with equation (17) of Risbud and Takwale (1977), except for the 
factor (1 -p i ) ” / ”  in the argument of the Bessel function, which arises here as a 
correction for relativistic electron velocities. We note that by Risbud and Takwale 
(1977) only dominant terms of the order of v o  have been taken, and terms of the order 
of U’, have been neglected without explicit mention. Therefore in equation (17) the 
multiplying factor v 2  is actually vi. We will not consider equation (21) further, since it is 
fully analysed by Risbud and Takwale (1977, 1979). 

Now let us consider the second term within the braces of equation (20) which gives 
the effects of the presence of the boundary at x = 0, in the following two interesting 
situations. Let us put 1 = 0 in equation (20), so that the mathematics becomes simple and 
manageable. Moreover, whatever applies to Cerenkov radiation can be extended to 
Doppler radiation. 

2.5. Radiation when the charge moves in a vacuum at a height h from the surface of a 
dielectric 

Here 

~ 1 ~ 1 ,  E ~ = E ,  /1.1=p2=1, h f O ,  ~ P i > l ,  l = O .  

Substituting the above values in the second term of equation (20), we get 

-aebd/dz = Re(ie2/2r)  dk, dkz dw(kzlxi)(l -Wvz/kzC2) 

Integration with respect to k, in equation (22) can be performed using a S function. 
Consider the integral with respect to k, in equation (22). On account of the exponential 
factor in the integral, which decreases rapidly with increasing k,, the main contribution 
to the integral comes from small values of k,. Consequently, we can keep only the 
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exp(-2hx1) term inside the integral and take the remaining slowly varying function of k, 
outside the integral at k, = 0. Therefore from equation (22) we write 

+cc 

- d s b d / d z  = Re(ie2/2mg) w dw(1 -p;)JE( 
wovo 

k 3 1  - ~ ) 2 + p ; ( X 1 + C Y X 2 ) ( X 1 - C Y E X 2 )  

-G (1 - +&Xl +CYXZ)(Xl+ aex2) 

dk, exp(-2hx1). 

Now integration with respect to k, can be performed using 
+m 

exp[-2a(x2 + b2)1 /2]  dx = ( rb/a)1/2 exp(-2ab). 

Because of x2, the expression in the braces of equation (23) is complex. Substituting for 
XI, x 2  and C Y ,  rationalising the denominator and taking only the imaginary part of the 
expression in the braces at k, = 0, we get 

where 

A = V,(I - p g ) 3 / 2 / ~ 0 ~ , - , .  
Here in equation (24) we have considered the situation where wo<< wm and we have 
therefore neglected v u  terms compared to v o  terms. Using Luke (1962), the integral 
with respect to w in equation (24) can be written as 

where a1 = (2h/vo)(l -pg)' /2 and the hypergeometric function 2F1 is given by 

2F1(-m, -m; I ;  I) = r (2m + i)/r2(m +I). 
From equations (24) and (25) we get 

ICer = (d8bd/az) / /=o  

Equation (26) gives the intensity of eerenkov radiation due to a charge e that moves 
with velocity uo in a vacuum with a relativistic superphase velocity at a height h ( h  # 0) 
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from the boundary of a dielectric when an alternating electric field is applied parallel to 
the boundary. 

For m = 0 equation (26) gives 

m=O 

which corresponds to Cerenkov radiation in the absence of the field due to a charge e 
moving in close proximity to the dielectric E. Equation (27) shows that the intensity of 
Cerenkov radiation is inversely proportional to the square of the height h at which the 
charge moves above the surface of a dielectric. 

To estimate the relative intensities of Cerenkov radiation in the situation when the 
charge moves above the surface of a dielectric at a height h, and the situation when it 
moves through an infinite dielectric, we calculate the intensity in both cases for 

n = J;= 1.495, P o  = 0,998, wm = 3.7674 x l O I 5  Hz. 

From equation (27) we get 

(Ioh2) = 0.1463 x J m2 

where h is ip metres, while the well known result of Frank and Tamm (1937,1967) gives 

I ,  = 0,6655 x J 

m, Io = 0,1463 x For h = J, and for h = 
Thus, as the charge moves closer and closer to the surface of the dielectric, the 

intensity of Cerenkov radiation increases and becomes comparable to the intensity of 
Cerenkov radiation given out of an infinite isotropic dielectric. But one cannot 
decrease h beyond a certain limit because of technical difficulties encountered in 
practice. Therefore the intensity of Cerenkov radiation is at least two to three orders 
less in this situation than in the usual one. 

The terms m = 1 , 2 . .  . of equation (26) account for the effect of the parallel 
alternating electric field on Cerenkov radiation which is given out because of the close 
presence of the dielectric. The infinite sum on the right-hand side of equation (26) is 
convergent for 

m, Io = 0.1463 x lowz6 J etc. 

The convergence condition on x‘ restricts the values of the parameters Eo, wo,  Po  and h. 
We vary any one of the parameters whose effect on Cerenkov radiation is to be 
investigated by keeping the remaining parameters fixed. Effects of the field and the 
boundary can thus be investigated completely with the help of equation (26). 

For = JE= 1.495 (Perspex), Po = 0.998, wm = 3.7674 x lo1’ Hz and w o  = 
2-8  x lo9 Hz, we have calculated the intensity of Cerenkov radiation in units of ( Ioh2)  
for various values of x ’  using equation (26). The variation of (Ic, , /Ioh2) as a function of 
X I  is shown graphically in figure 2. As x ’ a ( x / h ) ,  where x = Awm, for any fixed height h 
figure 2 shows that Cerenkov radiation gets reduced from its no-field value due to the 
presence of a parallel alternating electric field. This result is quite consistent with the 
conclusions drawn by Risbud and Takwale (1977) while dealing with an infinite 
dielectric medium. The dependence of Cerenkov radiation on height h can be studied 
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x ’ a  lxihi 

Figure 2. Variation of intensity of Cerenkov radiation with x ‘  

as follows. For the values of E ,  Po, wm and wo given above we have 

h = ( x / x ’ )  x 3.1409 x lop7 m. 

By fixing x one can find values of h for different values of x ‘ .  From these values of h one 
can calculate (Icer) in units of Io. We have plotted the intensity of eerenkov radiation as 
a function of h for x = 1, 10 and 100 in figure 3. Such graphs can be plotted for any 

Y 10-5 LO 

30 - 

; 20-  

10 r 

0 5 10 
h ( m i  x 10-5’ 

Figure 3. Variation of intensity of Cerenkov radiation with height h. For Am, = 1, S = 10 
and S’ = -6;  for Aw, = 10, S = 8 and S’ = - 5 ;  for Am, = 100, S = 6 and S ‘ =  -4. 
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value of x of interest. Then from this graph the height h may be chosen to optimise the 
intensity of Cerenkov radiation. 

2.6. Radiation when the charge moues exactly along the surface of a dielectric 

Here 
E 2  = E, E 1  = 1 = p1= p2, h = 0 ,  E&> 1, 1 = 0. 

Putting h = 0 and performing integration with respect to k ,  by using a 6 function in 
equation (22) ,  we get 

Consider first the integral with respect to k ,  in equation (28 ) :  

I. dk, k : ( l -  ~ ) ~ + P i ( x i  + ax2)(~1 - a ~ x 2 )  
+m 

I =  I_, ,[ - k 2 y ( l - - ) 2 + P i ( ~ 1 + a X 2 ) ( X * + a E ~ 2 )  

The conditions Re  x1 < 0 and E @ ; >  1 restrict the region of k,, i.e. k ,  G ( w / u 0 ) ( ~ P $ - -  1). 
Substituting k ,  = ( o / u o ) J ~ / 3 i -  15,, where 5 < 1 always, in the integral I and putting 
values 

x 2  = (iw/vO)J(EPi - 1 ~ 1 -  5’) 2 1/2  x l =  (w/Uo)[(EPi-  1)52+(1 - P o ) ]  
and a = (1 -/3i)/(l - E @ ; ) ,  we see that the expression in the square bracket is complex. 
Rationalising the denominator and taking only the imaginary part of the expression in 
the approximation w o  << om, we get from equation (28 )  

where 
A = ~ ( l - P ; ) / ( ~ + 1 ) ( 1 - ~ / 3 ? j )  

B = (1 + E - €Pi)/ (1 + €)(€Pi - 1). 

Integration with respect to 5 in equation (29 )  can be performed by substituting 
U = 5/(1- t2)’l2 and using the method of complex integration. The upper limit in the 
integral with respect to w can be replaced by om, the maximum frequency in the 
electromagnetic spectrum up to which the Cerenkov radiation condition can be 
satisfied. Integrating with respect to 5 and w,  we get from equation (29 )  the following 
expression for the intensity of Cerenkov radiation due to a charge e that moves exactly 
along the surface of the dielectric E in the presence of a parallel alternating electric field: 
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where 

A = U, (1 - p i ) 3 / 2 ~ 0 ~ 0 ,  v u  = eEo/mowo 

and .To, .TI are Bessel functions of the first kind. 
In the absence of a field, equation (30) reduces to 

(31) 
e 2 w i [ - 2 ~ ~ o + ( 1  + E  - E ~ ~ O ) ” ~ ( I  - E  + E P ~ + E ~ ~ ? J ) ]  

2vi(E2-1)(1+€-€pi)1’2 
Ib = 

A modest amount of manipulation shows that this agrees with equation (18) of Sitenko 
and Tkalich (1960). Calculating Ib from equation (31) for the values of E, Po, U,,, etc as 
specified before in § 2.5 and comparing it with I ,  (calculated in § 2.5), we see that the 
intensity of Cerenkov radiation when a charge moves exactly along the surface of a 
dielectric is about 60% of the intensity of the radiation when it moves through an 
infinite dielectric. 

From equation (30) we can determine the intensity of Cerenkov radiation when a 
charge moves with a superphase velocity along the surface of a dielectric in the presence 
of a parallel alternating electric field of any strength and frequency in any region 
of interest wherever the Cerenkov radiation conditions is satisfied, and when the 
approximation o0 << wm is valid. 

3. Perpendicular field: general expression for the radiation and analysis 

Let us consider the situation when an alternating electric field E = E o  sin wot is applied 
perpendicular to the direction of relativistic motion of the charge e, at a height h from 
the boundary separating two dielectrics (figure 1). Let Elly and trollz. In this case the 
charge density p and the current density j are 

where tr ( t ) ,  the velocity of the charge, modified due to the presence of the perpendicular 
field, has the following components: 

U ,  = U 0  

and 

Y 0) = u y ( t )  dt. 

We can write, in the linear approximation of U ; ,  

u,(t) = -(1 -pi)Uu cos WOt, v u  = eEo/mowo. 

Using equation (34’) we get 

y ( t )  = -(u,/wO)(l --pi) sin mot.  

(34) 

(34’) 

(35) 
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To determine the electromagnetic field of the charge, we solve Maxwell's equations 
with the charge and current densities given by equations (32)  and (33)  using the method 
of images, as done before for the parallel field. 

3.1. Field potentials in the upper half-space ( x  > 0 )  

In the upper half-space, the electric charge density is 

p , ( t ) = e S ( x - h ) S ( y - y ( t ) ) S ( z - u z t ) + e l ( y - y ( t ) , z - v , t ) S ( x + h )  (36)  

(37)  

and the magnetic charge density is 

p&)=  ml(y - y ( t ) ,  z -v, t)S(x + h ) .  

We find the solutions of Maxwell's equations (8) for electromagnetic potentials in the 
form given by equation (9) .  Substituting equations (36) ,  (37)  and (9 )  in equations (8), 
we obtain the following equations for the expansion coefficients 4 ( x ,  k,, k,, U ) ,  

A b ,  k,, k,, U ) ,  9 ( x ,  k,, kz ,  W )  and F ( x ,  k,, k,, U ) :  

a24/ax2 -xt4 
+m 

= - ( e / m d S ( x  - h )  JI(kZuuU - P t ) l W o )  

x S(o + Iw0- kzv,) -[el(k,, k,, w) /2 . rr2~,]S(x  + h )  

A Z ( X ,  k,, k,, o ) = P z c i r ~ i 4 ( ~ ,  k,, k,, W )  

A , ( x ,  k,, kz, ~ ) = P y ~ i r ~ i 4 ( x ,  k,, k,, 

FY(X, k,, kz, W )  = P Y E l C L l * ( X ,  k,, k,, W )  

(38)  

(39)  

(40)  

(41)  
and $(x,  k,, k,, w )  and Fz(x ,  k,, k,, W )  are as given by equations (12)  and (13)  
respectively. 

Here 
2 2 2 2 2 2  X 1 = k y + k z - W  n l / c  , P z  = vz/c = P o ,  P,  = vy/c, 
+m +m +m 

e l ( y - y ( t ) , z - v , t ) e x p [ - i ( k , y + k , z - w t ) ] d y  dz dt e1(k,, kz, = I_, I_, I_, 
and J I  is the Bessel function of the first kind. Now the solutions of equations (38), (39) ,  
(40) ,  (41) ,  (17)  and (18)  vanishing at infinity have the following form (using Davydov 
1965): 

4 ( l ) ( x ,  k,, kz ,  0) 
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where 

xi  = k: + k:  - 0 2 n i / c 2 ,  Re x2> 0 and x < 0. 

3.3. Electromagnetic field of the charge 

Using equations (42), (43) and (9) we can determine the electric potentials 
d(r ,  t ) ,  A(r,  t )  and magnetic potentials $(r,  t )  and F(r,  t )  in the two media. Elec- 
tromagnetic fields can then be obtained through equations ( 5 ) ,  (6) and (7). From the 
boundary conditions at x = 0, we determine the fictitious charge densities 
el(k,, k z ,  w ) ,  ml(k, ,  k,, U ) ,  e2(ky, k z ,  0) and 4 k , ,  k z ,  U ) .  

3.4. Energy radiated 

Now as before, the energy radiated is given by 

-a %/az = -e& I = J , , ~  = y ( t ) , z  = 

Calculating the z-component of the electric field at the location of the point charge, we 
get 
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where 

55 1 

with 

k,u,[l- (wu,/k,c2)n~1+ k,u,[l- (wu,/k,c2)n:] 
k,u,[l -(wuZ/k,c2)n;]+ k,u,[l- (wu,/k,c2)n~] 

@’ = 

+m 

ml(k,, k,, w )  = 2ip lx1P,k ,2~e  1 JI( kyuu(l-P’)) 
i=-m WO 

(46) 

Equation (44) represents the total energy loss of a point charge in the presence of the 
perpendicular alternating electric field when the charge moves with a relativistic 
superphase velocity through a dielectric c l  at a height h above its boundary with 
dielectric E ~ .  

Substituting el(k,, k,, w )  and ml(k,, k,, w )  respectively from equations (45) and (46) 
in equation (44) and integrating with respect to k, using the S function, we get for the 
energy loss 

where 

The 1 in the square brackets of equation (47) agrees with equation (27) of Risbud and 
Takwale (1977), except for a factor (1-Pi) in the argument of the Bessel function 
which comes in here as a correction for relativistic velocities. Also there is no 
distinction between u 2  and U: in equation (27) of Risbud and Takwale (1977), as stated 
before. This term represents the loss of energy by the charge in an unbounded dielectric 

in a perpendicular alternating electric field. For 1 = 0 it gives eerenkov radiation and 
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for 1 = *l, *2, . . . it corresponds to Doppler radiation. We need not analyse it further 
as it is fully discussed by Risbud and Takwale (1977, 1979). 

The remaining two terms containing the exponential factor exp(-2hxl) determine 
the energy losses mediated by the alternating electric field. Let us consider them in the 
following two interesting situations. 

3.5. Radiation when the charge moves in a vacuum a t  a height h from the surface of a 
dielectric 

Here = pl = p2 = 1, c2 = E ,  h # 0, E@: > 1 , 1 =  0. Consider integration with respect to 
k, in equation (47). Here the exponential factor dominates over the whole expression 
and, as discussed before, we can keep it inside the integral and take the remaining slowly 
varying function of k, outside the integral at the value k, = 0. Thus we can write from 
equation (47) 

+cc ie2 
w d o  J: (O)[ dk, exp(-2hxl)] 

agbd 
a t  

x u [ ( 1 - P l ) / ~ ’ l { ( w 2 / ~ l ) [ l  -PZ --a’(l - E P Z ) I 2  

+ P : ( x l + ~ ’ X 2 ) ( X l - ~ ’ ~ x z ) }  

-(2p;x:/D” - P :  -a’U -€P:)lIlik,=o (48) 

D’ =x1{(-w2/v:)[1 -PZ -a’(1 -€P:)I2+p:(X1 +afx2)(x1 +a‘€Xz)}. 

where 

Simplifying, keeping terms up to orders of p: and taking the imaginary part of the 
expression in the shadow brackets at k, = 0, and performing integrations with respect to 
k, and w in equation (48), we get the following result: 

Equation (47) represents eerenkov radiation in a perpendicular alternating electric 
field due to a charge e that moves in vacuum with a relativistic velocity satisfying the 
condition E @ ;  > 1 at a height h from the surface of a dielectric E .  As field parameters do 
not enter in equation (49), the field does not affect the radiation, at least in the linear 
approximation of vu. Equation (49) agrees with the no-field case represented by 
equation (27) obtained for the parallel field. 

3.6. Radiation when the charge moves exactly along the surface of a dielectric 

Here 

€1 = p1= pz = 1, € 2  = E ,  h =0 ,  E P :  ’ 1, 1=0.  

Substituting k, = ( w / v Z ) ( ~ P :  - 1)’”c where 5 < 1, in the second and third terms of 
equation (47), simplifying and taking terms up to orders ,G:, we get the following 
equation for energy loss: 
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where 

and 

A ' = ( w v , / w o v , ) J E ~ ~  - l ( l -p f ) .  
Consider the integral with respect to 5 in equation (50). Substituting 5 =sin 8, it can be 
written as 

+ T / 2  

J;(A'sin 0)  cos28 dO+(B-A)  J;(A'sin 0)  dB 
-m/2 

Using Gradshteyn and Ryzhik (1965) we see that the first two integrals in equation (51) 
are special cases of the following integral: 

lo J,(z sin t )Jv ( z  sin t )  sin2"-'t cos2'-'t dt  
71/2 

- _  1 ( ~ / 2 ) ~ + " r ( p ) r [ 4 ( ~  + v ) + c y ]  
2 r (p  + i)qv + i ) r [& + v) + + p ]  

- 

1 - z 2 )  
+(@ + v + l ) ,  ;((U + v + 2), +(p + v )  + c y  

+ v +  1, p + 1, v + 1, ;(/A + v)+cy + p  x 3F4( 

where 

Re(p  + v +2cy) > 0 ,  R e p > O  

The last integral in equation (51) can be evaluated by substituting z = exp(i0) and 
and 3F4 denotes a hypergeometric function. 

using the method of complex integration. Thus we get for equation (51) 

I = 1 [(-l)"r2(n ++)/r4(n + 1)][B - A  + 1/2(n + l)](A'w)'" 
m 

n =O 

+ r ( A  - B)(1+  l / B ) 1 ' 2 1 ~ ( A ' ~ ~ ~ ) .  (52 )  
Substituting the value of the integral I from equation (52 )  in equation (50)  and 
integrating with respect to U by replacing the upper limit 00 by wm and using Gradshteyn 
and Ryzhik (1965), we get finally 

I C e r =  (a%bd/az)lI=o 

- - T E P ,  [I:(A"wm) - I?j(A"w,)] 
(1 + E ) ( E P  f - 1)J1+ E - E p :  
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where 

and Io, I I  are modified Bessel functions of the first kind. 
Equation (53) gives Cerenkov radiation in the presence of a perpendicular alternat- 

ing electric field when a charge moves with a constant relativistic superphase velocity 
exactly along the surface of a dielectric. In the absence of a field, equation (53) reduces 
to the no-field case: equation (31) obtained for the parallel field. The infinite sum 
appearing on the right-hand side of equation"(53) is absolutely convergent. From 
equation (53) one can evaluate the intensity of Cerenkov radiation in this situation for 
any values of field parameters, for any frequency region of interest wherever the 
Cerenkov radiation condition is satisfied and the approximation WO<< wm is valid. 
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